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Overview
Thiscontractwas a continuation of a project started the previous year. The goal is to better understand how

TCP behaves over noisy, high latency links such as satellite links and propose improvements to TCP imple-

mentations such that TCP might better handle such links.

Major Accomplishments

Advocacy: Project members attended various Internet technical meetings to speak as advocates for improv-

ing TCP performance over satellite links. The particular meetings attended were:

• Meetings of the Internet Engineering Task Force (IETF). During the period of performance,

the IETF has had an active working group investigating TCP performance issues. Members of

this project attended the December 1997 and March 1998 IETF meetings.

• Meetings of the Internet End-to-End Research Group (E2E). The End-To-End research group

is where many of the innovative ideas for TCP work have been initially developed in the past

ten years. Dr. Partridge is a member of E2E and attended three meetings of the research group
in 1998.

• Dr. Partridge gave a keynote speech at the NASA Lewis sponsored workshop on "Satellite Net-

works: Architectures, Applications, and Technologies" held June 2-4, 1998, in Cleveland,

Ohio, at the Sheraton Airport Hotel.

Publications: Project members wrote various papers to highlight the issues of TCP performance over satel-

lite links. Four publications appeared during this contract:

• C. Partridge and T. Shepard, "TCPflP Performance over Satellite Links," IEEE Network, Vol.

11, No. 5, September 1997, pp. 44-49. This paper was written during the previous year of the

project but appeared in this year.

• T. Shepard and C. Partridge, "When TCP Starts Up With Four Packets Into Only Three

Buffers," lnternet Working Group Requests for Comments, no. 2416, September 1998. A study

that helped justify the IETF's decision to allow TCP to send more data in the initial round-trip.

• M. AIIman, S. Floyd and C. Partridge, "Increasing TCP's Initial Window," lnternet Working

Group Requests for Comments, no. 2414, September 1998. The IETF document that approved

allowing TCP to send more data in the initial round-trip.

• C. Partridge, "ACK Spacing for High Delay-Bandwidth Paths with Insufficient Buffering."
This document was released as an Internet Draft but was not published due to various IETF

procedural difficulties.

Implementations: The project also did some implementation work and prepared to do more, to demonstrate

improved TCPs. In particular, the goup did the following two implementation projects:
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PortingTCPForwardAcknowledgementsto NetBSD.ForwardAcknowledgementsarea
mechanismthatimproveTCPthroughputoverlossylinks.
Developinginitialcodeto supportTCPPacing.TheideabehindTCPPacingis tospaceout
TCPburststoreducelossatundersizedqueuesinthenetwork.Weimplementedthenecessary
high-speedtimerintheUNIXkernelforthispurpose.
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End-To-End Research Group

Request for Comments: DRAFT

Category: Informational

C. Partridge

BBN Technologies

Sep 1998

ACK Spacing for High Delay-Bandwidth Paths with Insufficient Buffering

Status of this Memo

An argument is made that the correct way to solve buffering shortages

in routers on high delay-bandwidth paths is for routers to space out

the TCP acks.

This memo presents thoughts from a discussion held at the July 1997

meeting of the End-To-End (E2E) Research Group. The material

presented is a half-baked suggestion and should not be interpreted as

an official recommendation of the Research Group. Comments are

solicited and should be addressed to the author.

i. Introduction

Suppose you want TCP implementations to be able to fill a 155 Ml)/s

path. Further suppose that the path includes a satellite in a

geosynchronous orbit, so the round trip delay through the path is at

least 500 ms, and the delay-bandwidth product is 9.7 megabytes or

more.

If we further assume the TCP implementations support TCP Large

Windows and PAWS (many do), so they can manage 9.7 MB TCP window,

then we can be sure the TCP will eventually start sending at full

path rate (unless the satellite channel is very lossy). But it may

take a long time to get the TCP up to full speed.

One (of several) possible causes of the delay is a shortage of

buffering in routers. To understand this particular problem,

consider the following idealized behavior of TCP during slow start.

During slow start, for every segment ACKed, the sender transmits two

new segments. In effect, this behavior means the sender is

transmitting at *twice* the data rate of the segments being ACKed.

Keep in mind the separation between ACKs represents (in an ideal

world) the rate segments can flow through the bottleneck router in

the path. So the sender is bursting data at twice the bottleneck

rate, and a queue must be forming during the burst. In the simplest

case, the queue is entirely at the bottleneck router, and at the end

of the burst, the queue is storing half the data in the burst. (Why

Partridge [Page i]
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half? During the burst, the sender transmitted at twice the

bottleneck rate. Suppose it takes one time unit to send a segment on

the bottlenecked link. During the burst the bottleneck will receive

two segments in every time unit, but only be able to transmit one

segment. The result is a net of one new segment queued every time

unit, for the life of the burst.)

TCP will end the slow start phase in response to the first lost

datagram. Assuming good quality transmission links, the first lost

datagram will be lost because the bottleneck queue overflowed. We

would like that loss to occur in the round-trip after the slow start

congestion window has reached the delay-bandwidth product. Now

consider the buffering required in the bottleneck link during the

next to last round trip. The sender will send an entire delay-

bandwidth worth of data in one-half a round-trip time (because it

sends at twice the channel rate). So for half the round-trip time,

the bottleneck router is in the mode of forwarding one segment while

receiving two. (For the second half of the round-trip, the router is

draining its queue). That means, to avoid losing any segments, the

router must have buffering equal to half the delay-bandwidth product,

or nearly 5 MB.

Most routers do not have anywhere near 5 MB of buffering for a single

link. Or, to express this problem another way, because routers do

not have this much buffering, the slow start stage will end

prematurely, when router buffering is exhausted. The consequence of

ending slow start prematurely is severe. At the end of slow start,

TCP goes into congestion avoidance, in which the window size is

increased much more slowly. So even though the channel is free,

because we did not have enough router buffering, we will transmit

slowly for a period of time (until the more conservative congestion

avoidance algorithm sends enough data to fill the channel).

2. What to Do?

So how to get around the shortage of router buffering?

One solution has been proposed, cascading TCPs. We would like to

suggest another solution, ACK spacing. Both schemes involve layer

violations because they require the router to examine the TCP header.

2.1 Cascading TCPs

One approach is to use cascading TCPs, in which we build a custom TCP

for the satellite (or bottleneck) link and insert it between the

sender's and receiver's TCPs, as shown below:

Partridge [Page 2]

NASA/CR-- 1999-209167 4



RFC DRAFT Sep 1998

sender

I loop i

Ground station -- satellite -- ground station -- receiver

1 1 loop2 1 I loop3 I

This approach can work but is awkward. Among its limitations are:

the buffering problem remains (at points of bandwidth mismatches,

queues will form); the scheme violates end-to-end semantics of TCP

(the sender will get ACKs for data that has not and may never reach

the receiver); it constrains the reverse path of the TCP connection

to pass through points at which the multiple TCP connections are

spliced together (a problem if satellite links are unidirectional);

and it doesn't work with end-to-end encryption (i.e. if data above

the IP layer is encrypted).

2.2 ACK Spacing

Another approach is to find some way to spread the bursts, either by

having the sender spread out the segments, or having the network

arrange for the ACKs to arrive at the sender with a two segment

spacing (or larger).

Changing the sender is feasible, although it requires very good

operating system timers. But it has the disadvantage that only

upgraded senders get the performance improvement.

Finding a way for the network to space the ACKs would allow TCP

senders to transmit at the right rate, without modification.

Furthermore, it can be done by a router. The router simply has to

snoop the returning TCP ACKs and spread them out. (Note that if the

transmissions are encrypted, in many scenarios the router can still

figure out which segments are likely TCP ACKs and spread them out).

There are some difficult issues with this approach.

ones are:

The most notable

i. What algorithm to use to determine the proper ACK spacing.

2. Related to (i), it may be necessary to known when a TCP is in

slow-start vs. congestion-avoidance, as the desired spacing

between ACKs is likely to be different in the two phases.

3. What to do about assymetric routes (if anything). The scheme

works so long as the router sees the ACKs (it does not have to see

the related data). However, if the ACKs do not return through the

ACK-spacing router, it is not possible to do ACK spacing.

Partridge [Page 3]
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4. How much, if at all, does ack compression between the respacing

point and the sender undo the effects of ack spacing?

5. How much per-flow (soft) state is required in the ACK spacing

router?

Despite these challenges the approach has appeal. Changing software

in a few routers (particularly those at likely bottleneck links) on

high delay-bandwidth paths could give a performance boost to lots of

TCP connections.

Security issues

ACK spacing introduces no new security issues. ACK spacing does not

change the contents of any datagram. It simply delays some

datagrams in transit, just as a queue might. TCP and other higher

layer protocols are already required to work correctly with queueing

delays, and indeed, work correctly when encountering far more serious

transmission errors such as damage, loss, duplication and reordering

[2] .

Credit and Disclaimer

The particular idea of ACK spacing was developed by during the

meeting by Mark Handley and Van Jacobson in response to an issue

raised by the author, and was inspired, in part by ideas to enhance

wireless routers to improve TCP performance [i].

Intellectual Property Issues

The author has learned from the IETF that parties may be attempting

to patent schemes similar to this one. Readers are advised to check

with the IETF to learn of any intellectual property rights issues.
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Increasing TCP's Initial Window

Status of this Memo

This memo defines an Experimental Protocol for the Internet

community. It does not specify an Internet standard of any kind.

Discussion and suggestions for improvement are requested.

Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

This document specifies an increase in the permitted initial window

for TCP from one segment to roughly 4K bytes. This document

discusses the advantages and disadvantages of such a change,

outlining experimental results that indicate the costs and benefits

of such a change to TCP.

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

I. TCP Modification

This document specifies an increase in the permitted upper bound for

TCP's initial window from one segment to between two and four

segments. In most cases, this change results in an upper bound on

the initial window of roughly 4K bytes (although given a large

segment size, the permitted initial window of two segments could be

significantly larger than 4K bytes). The upper bound for the initial

window is given more precisely in (i):

min (4*MSS, max (2*MSS, 4380 bytes)) (i)

Allman, et. al.

RFC 2414

Experimental

Increasing TCP's Initial Window

[Page i]

September 1998
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Equivalently, the upper bound for the initial window size is based on

the maximum segment size (MSS), as follows:

If (MSS <= 1095 bytes)

then win <= 4 * MSS;

If (1095 bytes < MSS < 2190 bytes)

then win <= 4380;

If (2190 bytes <= MSS)

then win <= 2 * MSS;

This increased initial window is optional: that a TCP MAY start with

a larger initial window, not that it SHOULD.

This upper bound fpr the initial window size represents a change from

RFC 2001 [$97], which specifies that the congestion window be

initialized to one segment. If implementation experience proves

successful, then the intent is for this change to be incorporated
into a revision to RFC 2001.

This change applies to the initial window of the connection in the

first round trip time (RTT) of transmission following the TCP three-

way handshake. Neither the SYN/ACK nor its acknowledgment (ACK) in
the three-way handshake should increase the initial window size above

that outlined in equation (i). If the SYN or SYN/ACK is lost, the

initial window used by a sender after a correctly transmitted SYN

MUST be one segment.

TCP implementations use slow start in as many as three different

ways: (i) to start a new connection (the initial window); (2) to

restart a transmission after a long idle period (the restart window);

and (3) to restart after a retransmit timeout (the loss window). The

change proposed in this document affects the value of the initial

window. Optionally, a TCP MAY set the restart window to the minimum

of the value used for the initial window and the current value of

cwnd (in other words, using a larger value for the restart window

should never increase the size of cwnd). These changes do NOT change

the loss window, which must remain 1 segment (to permit the lowest

possible window size in the case of severe congestion).

2. Implementation Issues

When larger initial windows are implemented along with Path MTU

Discovery [MD90], and the MSS being used is found to be too large,

the congestion window "cwnd' SHOULD be reduced to prevent large

bursts of smaller segments. Specifically, 'cwnd' SHOULD be reduced

by the ratio of the old segment size to the new segment size.

Allman, et. al.
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When larger initial windows are implemented along with Path MTU

Discovery [MD90], alternatives are to set the "Don't Fragment" (DF)

bit in all segments in the initial window, or to set the "Don't

Fragment" (DF) bit in one of the segments. It is an open question

which of these two alternatives is best; we would hope that
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implementation experiences will shed light on this. In the first

case of setting the DF bit in all segments, if the initial packets

are too large, then all of the initial packets will be dropped in the

network. In the second case of setting the DF bit in only one

segment, if the initial packets are too large, then all but one of

the initial packets will be fragmented in the network. When the

second case is followed, setting the DF bit in the last segment in

the initial window provides the least chance for needless

retransmissions when the initial segment size is found to be too

large, because it minimizes the chances of duplicate ACKs triggering

a Fast Retransmit. However, more attention needs to be paid to the

interaction between larger initial windows and Path MTU Discovery.

The larger initial window proposed in this document is not intended

as an encouragement for web browsers to open multiple simultaneous

TCP connections all with large initial windows. When web browsers

open simultaneous TCP connections to the same destination, this works

against TCP's congestion control mechanisms [FF98], regardless of the

size of the initial window. Combining this behavior with larger
initial windows further increases the unfairness to other traffic in

the network.

3. Advantages of Larger Initial Windows

l° When the initial window is one segment, a receiver employing

delayed ACKs [Bra89] is forced to wait for a timeout before

generating an ACK. With an initial window of at least two

segments, the receiver will generate an ACK after the second data

segment arrives. This eliminates the wait on the timeout (often

up to 200 msec).

2 . For connections transmitting only a small amount of data, a

larger initial window reduces the transmission time (assuming at

most moderate segment drop rates). For many email (SMTP [Pos82])

and web page (HTTP [BLFN96, FJGFBL97]) transfers that are less

than 4K bytes, the larger initial window would reduce the data

transfer time to a single RTT.

3 . For connections that will be able to use large congestion

windows, this modification eliminates up to three RTTs and a

delayed ACK timeout during the initial slow-start phase. This

Allman, et. al.
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4.

would be of particular benefit for high-bandwidth large-

propagation-delay TCP connections, such as those over satellite
links.

Disadvantages of Larger Initial Windows for the Individual
Connection

In high-congestion environments, particularly for routers that have a

bias against bursty traffic (as in the typical Drop Tail router

queues), a TCP connection can sometimes be better off starting with

NASA/CR--1999-209167 9



an initial window of one segment. There are scenarios where a TCP

connection slow-starting from an initial window of one segment might

not have segments dropped, while a TCP connection starting with an

initial window of four segments might experience unnecessary

retransmits due to the inability of the router to handle small

bursts. This could result in an unnecessary retransmit timeout. For
a large-window connection that is able to recover without a

retransmit timeout, this could result in an unnecessarily-early

transition from the slow-start to the congestion-avoidance phase of

the window increase algorithm. These premature segment drops are

unlikely to occur in uncongested networks with sufficient buffering

or in moderately-congested networks where the congested router uses

active queue management (such as Random Early Detection [FJ93,
RFC2309]).

Some TCP connections will receive better performance with the higher
initial window even if the burstiness of the initial window results

in premature segment drops. This will be true if (i) the TCP

connection recovers from the segment drop without a retransmit

timeout, and (2) the TCP connection is ultimately limited to a small

congestion window by either network congestion or by the receiver's
advertised window.

5. Disadvantages of Larger Initial Windows for the Network

In terms of the potential for congestion collapse, we consider two

separate potential dangers for the network. The first danger would

be a scenario where a large number of segments on congested links

were duplicate segments that had already been received at the

receiver. The second danger would be a scenario where a large number

of segments on congested links were segments that would be dropped

later in the network before reaching their final destination.

In terms of the negative effect on other traffic in the network, a

potential disadvantage of larger initial windows would be that they

increase the general packet drop rate in the network. We discuss
these three issues below.

Allman, et. al.
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Duplicate segments:

As described in the previous section, the larger initial window

could occasionally result in a segment dropped from the initial

window, when that segment might not have been dropped if the

sender had slow-started from an initial window of one segment.

However, Appendix A shows that even in this case, the larger

initial window would not result in the transmission of a large

number of duplicate segments.

Segments dropped later in the network:

How much would the larger initial window for TCP increase the

number of segments on congested links that would be dropped

before reaching their final destination? This is a problem that

NASA/CR-- 1999-209 ! 67 10



can only occur for connections with multiple congested links,

where some segments might use scarce bandwidth on the first

congested link along the path, only to be dropped later along the

path.

First, many of the TCP connections will have only one congested

link along the path. Segments dropped from these connections do

not "waste" scarce bandwidth, and do not contribute to congestion

collapse.

However, some network paths will have multiple congested links,

and segments dropped from the initial window could use scarce

bandwidth along the earlier congested links before ultimately

being dropped on subsequent congested links. To the extent that

the drop rate is independent of the initial window used by TCP

segments, the problem of congested links carrying segments that

will be dropped before reaching their destination will be similar

for TCP connections that start by sending four segments or one

segment.

An increased packet drop rate:

For a network with a high segment drop rate, increasing the TCP

initial window could increase the segment drop rate even further.

This is in part because routers with Drop Tail queue management

have difficulties with bursty traffic in times of congestion.

However, given uncorrelated arrivals for TCP connections, the

larger TCP initial window should not significantly increase the

segment drop rate. Simulation-based explorations of these issues
are discussed in Section 7.2.

Allman, et. al.
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These potential dangers for the network are explored in simulations

and experiments described in the section below. Our judgement would

be, while there are dangers of congestion collapse in the current

Internet (see [FF98] for a discussion of the dangers of congestion

collapse from an increased deployment of UDP connections without

end-to-end congestion control), there is no such danger to the

network from increasing the TCP initial window to 4K bytes.

6. Typical Levels of Burstiness for TCP Traffic.

Larger TCP initial windows would not dramatically increase the

burstiness of TCP traffic in the Internet today, because such traffic

is already fairly bursty. Bursts of two and three segments are

already typical of TCP [Fio97]; A delayed ACK (covering two

previously unacknowledged segments) received during congestion

avoidance causes the congestion window to slide and two segments to

be sent. The same delayed ACK received during slow start causes the

window to slide by two segments and then be incremented by one

segment, resulting in a three-segment burst. While not necessarily

typical, bursts of four and five segments for TCP are not rare.

NASAJCR-- 1999-209167 I 1



Assuming delayed ACKs, a single dropped ACK causes the subsequent ACK

to cover four previously unacknowledged segments. During congestion

avoidance this leads to a four-segment burst and during slow start a

five-segment burst is generated.

There are also changes in progress that reduce the performance

problems posed by moderate traffic bursts. One such change is the

deployment of higher-speed links in some parts of the network, where

a burst Of 4K bytes can represent a small quantity of data. A second

change, for routers with sufficient buffering, is the deployment of

queue management mechanisms such as RED, which is designed to be
tolerant of transient traffic bursts.

7. Simulations and Experimental Results

7.1 Studies of TCP Connections using that Larger Initial Window

This section surveys simulations and experiments that have been used

to explore the effect of larger initial windows on the TCP connection

using that larger window. The first set of experiments explores

performance over satellite links. Larger initial windows have been

shown to improve performance of TCP connections over satellite

channels [Al197b]. In this study, an initial window of four segments

(512 byte MSS) resulted in throughput improvements of up to 30%

(depending upon transfer size). [KAGT98] shows that the use of

larger initial windows results in a decrease in transfer time in HTTP

tests over the ACTS satellite system. A study involving simulations

Allman, et. al.
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of a large number of HTTP transactions over hybrid fiber coax (HFC)

indicates that the use of larger initial windows decreases the time

required to load WWW pages [Nic97].

A second set of experiments has explored TCP performance over dialup

modem links. In experiments over a 28.8 bps dialup channel [Al197a,

AH098], a four-segment initial window decreased the transfer time of

a 16KB file by roughly 10%, with no accompanying increase in the drop

rate. A particular area of concern has been TCP performance over low

speed tail circuits (e.g., dialup modem links) with routers with

small buffers. A simulation study [SP97] investigated the effects of

using a larger initial window on a host connected by a slow modem

link and a router with a 3 packet buffer. The study concluded that

for the scenario investigated, the use of larger initial windows was

not harmful to TCP performance. Questions have been raised

concerning the effects of larger initial windows on the transfer time

for short transfers in this environment, but these effects have not

been quantified. A question has also been raised concerning the

possible effect on existing TCP connections sharing the link.

7.2 Studies of Networks using Larger Initial Windows

This section surveys simulations and experiments investigating the

impact of the larger window on other TCP connections sharing the

path. Experiments in [Al197a, AH098] show that for 16 KB transfers

NASA/CR-- 1999-209167 12



to i00 Internet hosts, four-segment initial windows resulted in a

small increase in the drop rate of 0.04 segments/transfer. While the

drop rate increased slightly, the transfer time was reduced by

roughly 25% for transfers using the four-segment (512 byte MSS)

initial window when compared to an initial window of one segment.

One scenario of concern is heavily loaded links. For instance, a

couple of years ago, one of the trans-Atlantic links was so heavily

loaded that the correct congestion window size for a connection was

about one segment. In this environment, new connections using larger

initial windows would be starting with windows that were four times

too big. What would the effects be? Do connections thrash?

A simulation study in [PN98] explores the impact of a larger initial

window on competing network traffic. In this investigation, HTTP and

FTP flows share a single congested gateway (where the number of HTTP

and FTP flows varies from one simulation set to another). For each

simulation set, the paper examines aggregate link utilization and

packet drop rates, median web page delay, and network power for the

FTP transfers. The larger initial window generally resulted in

increased throughput, slightly-increased packet drop rates, and an

increase in overall network power. With the exception of one

scenario, the larger initial window resulted in an increase in the

Ailman, et. al.
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drop rate of less than 1% above the loss rate experienced when using

a one-segment initial window; in this scenario, the drop rate

increased from 3.5% with one-segment initial windows, to 4.5% with

four-segment initial windows. The overall conclusions were that

increasing the TCP initial window to three packets (or 4380 bytes)

helps to improve perceived performance.

Morris [Mor97] investigated larger initial windows in a very

congested network with transfers of size 20K. The loss rate in

networks where all TCP connections use an initial window of four

segments is shown to be 1-2% greater than in a network where all

connections use an initial window of one segment. This relationship

held in scenarios where the loss rates with one-segment initial

windows ranged from 1% to 11%. In addition, in networks where

connections used an initial window of four segments, TCP connections

spent more time waiting for the retransmit timer (RTO) to expire to

resend a segment than was spent when using an initial window of one

segment. The time spent waiting for the RTO timer to expire

represents idle time when no useful work was being accomplished for

that connection. These results show that in a very congested

environment, where each connection's share of the bottleneck

bandwidth is close to one segment, using a larger initial window can

cause a perceptible increase in both loss rates and retransmit
timeouts.

8. Security Considerations

This document discusses the initial congestion window permitted for

TCP connections. Changing this value does not raise any known new

security issues with TCP.

NASA/CR-- 1999-209167 i 3



9. Conclusion

This document proposes a small change to TCP that may be beneficial

to short-lived TCP connections and those over links with long RTTs

(saving several RTTs during the initial slow-start phase).
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13. Appendix - Duplicate Segments

In the current environment (without Explicit Congestion Notification

[Fio94] [RF97]), all TCPs use segment drops as indications from the

network about the limits of available bandwidth. We argue here that

the change to a larger initial window should not result in the sender

retransmitting a large number of duplicate segments that have already
been received at the receiver.

If one segment is dropped from the initial window, there are three

different ways for TCP to recover: (i) Slow-starting from a window of

one segment, as is done after a retransmit timeout, or after Fast

Retransmit in Tahoe TCP; (2) Fast Recovery without selective

acknowledgments (SACK), as is done after three duplicate ACKs in Reno

TCP; and (3) Fast Recovery with SACK, for TCP where both the sender

and the receiver support the SACK option [MMFR96]. In all three

cases, if a single segment is dropped from the initial window, no

duplicate segments (i.e., segments that have already been received at

the receiver) are transmitted. Note that for a TCP sending four

512-byte segments in the initial window, a single segment drop will

not require a retransmit timeout, but can be recovered from using the

Fast Retransmit algorithm (unless the retransmit timer expires

prematurely). In addition, a single segment dropped from an initial

window of three segments might be repaired using the fast retransmit

algorithm, depending on which segment is dropped and whether or not

delayed ACKs are used. For example, dropping the first segment of a

three segment initial window will always require waiting for a

timeout. However, dropping the third segment will always allow

recovery via the fast retransmit algorithm, as long as no ACKs are
lost.

Next we consider scenarios where the initial window contains two to

four segments, and at least two of those segments are dropped. If

all segments in the initial window are dropped, then clearly no

duplicate segments are retransmitted, as the receiver has not yet

received any segments. (It is still a possibility that these dropped

segments used scarce bandwidth on the way to their drop point; this

issue was discussed in Section 5.)

When two segments are dropped from an initial window of three

segments, the sender will only send a duplicate segment if the first

two of the three segments were dropped, and the sender does not

receive a packet with the SACK option acknowledging the third

segment.

When two segments are dropped from an initial window of four

segments, an examination of the six possible scenarios (which we

don't go through here) shows that, depending on the position of the

Allman, et. al. Experimental [Page 12]
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dropped packets, in the absence of SACK the sender might send one

duplicate segment. There are no scenarios in which the sender sends

two duplicate segments.

When three segments are dropped from an initial window of four

segments, then, in the absence of SACK, it is possible that one

duplicate segment will be sent, depending on the position of the
dropped segments.

The summary is that in the absence of SACK, there are some scenarios

with multiple segment drops from the initial window where one

duplicate segment will be transmitted. There are no scenarios where

more that one duplicate segment will be transmitted. Our conclusion

is that the number of duplicate segments transmitted as a result of a

larger initial window should be small.
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Abstract

This memo is to document a simple experiment. The experiment showed

that in the case of a TCP receiver behind a 9600 bps modem link at

the edge of a fast Internet where there are only 3 buffers before the

modem (and the fourth packet of a four-packet start will surely be

dropped), no significant degradation in performance is experienced by

a TCP sending with a four-packet start when compared with a normal

slow start (which starts with just one packet).

Background

Sally Floyd has proposed that TCPs start their initial slow start by

sending as many as four packets (instead of the usual one packet) as
a means of getting TCP up-6o_speed faster. (Slow starts instigated

due to timeouts would still start with just one packet.) Starting

with more than one packet might reduce th e start-u p latency over

long-fat pipes by two round-trip times. This proposal is documented

further in [i], [2], and in [3] and we assume the reader is familiar

with the details of this proposal.

On the end2end-interest mailing list, concern was raised that in the

(allegedly common) case where a slow modem is served by a router

which only allocates three buffers per modem (one buffer being

transmitted while two packets are waiting), that starting with four

packets would not be good because the fourth packet is sure to be

dropped.
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Vern Paxson replied with the comment (among other things) that the

four-packet start is no worse than what happens after two round trip

times in normal slow start, hence no new problem is introduced by

starting with as many as four packets. If there is a problem with a
four-packet start, then the problem already exists in a normal slow-

start startup after two round trip times when the slow-start

algorithm will release into the net four closely spaced packets.

The experiment reported here confirmed Vern Paxson's reasoning.

Scenario and experimental setup

+ ........ + 100 Mbps +---+ 1.5 Mbps +---+ 9600 bps + .......... +

I source + ............ + R + ............. + R + .............. + receiver I

+ ........ + no delay +---+ 25 ms delay +---+ 150 ms delay + .......... +

I
I

(we spy here) (this router has only 3 buffers

to hold packets going into the

9600 bps link)

The scenario studied and simulated consists of three links between

the source and sink. The first link is a 100 Mbps link with no

delay. It connects the sender to a router. (It was included to have

a means of logging the returning ACKs at the time they would be seen

by the sender.) The second link is a 1.5 Mbps link with a 25 ms

one-way delay. (This link was included to roughly model traversing
an un-congested, intra-continental piece of the terrestrial

Internet.) The third link is a 9600 bps link with a 150 ms one-way

delay. It connects the edge of the net to a receiver which is behind
the 9600 bps link.

The queue limits for the queues at each end of the first two links

were set to 100 (a value sufficiently large that this limit was never

a factor). The queue limits at each end of the 9600 bps link were

set to 3 packets (which can hold at most two packets while one is
being sent).

Version 1.2a2 of the the NS simulator (available from LBL) was used

to simulate both one-packet and four-packet starts for each of the

available TCP algorithms (tahoe, reno, sack, fack) and the conclusion

reported here is independent of which TCP algorithm is used (in

general, we believe). In this memo, the "tahoe" module will be used

to illustrate what happens. In the 4-packet start cases, the

"window-init" variable was set to 4, and the TCP implementations were

modified to use the value of the window-init variable only on

Shepard & Partridge Informational [Page 2]

RFC 2416 TCP with Four Packets into Three Buffers September 1998

connection start, but to set cwnd to 1 on other instances of a slow-

start. (The tcp.cc module as shipped with ns-l.2a2 would use the

window-init value in all cases.)

The packets in simulation are 1024 bytes long for purposes of
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determining the time it takes to transmit them through the links.

(The TCP modules included with the LBL NS simulator do not simulate

the TCP sequence number mechanisms. They use just packet numbers.)

Observations are made of all packets and acknowledgements crossing

the i00 Mbps no-delay link, near the sender. (All descriptions below
are from this point of view.)

What happens with normal slow start

At time 0.0 packet number 1 is sent.

At time 1.222 an ack Is received coverlng packet number 1 and

packets 2 and 3 are sent.

At time 2.444 an ack is received coverlng packet number 2 and

packets 4 and 5 are sent.

At time 3.278 an ack Is received coverlng packet number 3 and

packets 6 and 7 are sent.

At time 4.111 an ack is received coverlng packet number 4 and
packets 8 and 9 are sent.

At time 4.944 an ack is received covering packet number 5 and

packets i0 and ii are sent.

At time 5.778 an ack is received coverlng packet number 6 and

packets 12 and 13 are sent.

At time 6.111 a duplicate ack is recieved (covering packet number 6).

At time 7.444 another duplicate ack is received (covering packet
number 6).

At time 8.278 a third duplicate ack is received (covering packet

number 6) and packet number 7 is retransmitted.

(And the trace continues...)

What happens with a four-packet start

At time 0.0, packets i, 2, 3, and 4 are sent.

Shepard & Partridge Informational [Page 3]
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At time 1.222 an ack is received covering packet number i, and

packets 5 and 6 are sent.

At time 2.055 an ack is received covering packet number 2, and

packets 7 and 8 are sent.

At time 2.889 an ack is received covering packet number 3, and
packets 9 and i0 are sent.

At time 3.722 a duplicate ack is received (covering packet number 3).
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At time 4.555 another duplicate ack is received (covering packet
number 3) .

At time 5.389 a third duplicate ack is received (covering packet
number 3) and packet number 4 is retransmitted.

(And the trace continues...)

Discussion

At the point left off in the two traces above, the two different

systems are in almost identical states. The two traces from that

point on are almost the same, modulo a shift in time of (8.278 -

5.389) = 2.889 seconds and a shift of three packets. If the normal

TCP (with the one-packet start) will deliver packet N at time T, then

the TCP with the four-packet start will deliver packet N - 3 at time
T - 2.889 (seconds).

Note that the time to send three 1024-byte TCP segments through a

9600 bps modem is 2.66 seconds. So at what time does the four-

packet-start TCP deliver packet N? At time T - 2.889 ÷ 2.66 = T -

0.229 in most cases, and in some cases earlier, in some cases later,

because different packets (by number) experience loss in the two
traces.

Thus the four-packet-start TCP is in some sense 0.229 seconds (or

about one fifth of a packet) ahead of where the one-packet-start TCP

would be. (This is due to the extra time the modem sits idle while

waiting for the dally timer to go off in the receiver in the case of

the one-packet-start TCP.)

The states of the two systems are not exactly identical. They differ

slightly in the round-trip-time estimators because the behavior at

the start is not identical. (The observed round trip times may differ

by a small amount due to dally timers and due to that the one-packet

start experiences more round trip times before the first loss.) In

the cases where a retransmit timer did later go off, the additional
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difference in timing was much smaller than the 0.229 second
difference discribed above.

Conclusion

In this particular case, the four-packet start is not harmful.

Non-conclusions, opinions, and future work

A four-packet start would be very helpful in situations where a

long-delay link is involved (as it would reduce transfer times for

moderately-sized transfers by as much as two round-trip times). But

it remains (in the authors' opinions at this time) an open question

whether or not the four-packet start would be safe for the network.

It would be nice to see if this result could be duplicated with real
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TCPs, real modems, and real three-buffer limits.

Security Considerations

This document discusses a simulation study of the effects of a

proposed change to TCP. Consequently, there are no security

considerations directly related to the document. There are also no

known security considerations associated with the proposed change.
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Abstract

Achieving high data rates using TCP/IP over satellite networks can be difficult. This
article explains some of the reasons TCP/IP has difficulty with satellite links. We

resent solutions to some problems, and describe the state of the research on someP
OFthe unsolved problems.

_of TCP/IP impact performance. We then pre-
sent issues specific to satellites aninformal)
about how well TCP/IP performs over satellite
links. Some reports indicate TCP/IP throughput

is poor. Others report that TCP/IP throughput is quite good.
It is very difficult to determine which reports deserve more
credence.

This article tries to clarify the situation. Our approach is to
first discuss TCP/IP performance analytically, indicating what
features of TCP/IP impact performance. We then present
issues specific to satellites and their solutions, if known.

An Overview of TCP and IP Performance

CP/IP is a surprising complex protocol suite and more than
ne person has written an entire book on the details of its

operation. I Rather than try to summarize all of TCP/IP, our
goal in this section is to present those aspects of TCP/IP that
most directly affect TCP/IP throughpm. More specifically, we
will focus on a particular aspect of throughput, namely the
effective transmission rate of valid data (sometimes called
goodput) that a TCP/IP connection can achieve.

IP Throughput Issues
IP (the Internet Protocol) is the network layer protocol in the
TCP/IP protocol suite. IP's function is to provide a protocol
to integrate heterogeneous networks together. In brief, a
media-specific way to encapsulate IP datagrams is def'med for
each media (e.g., satellite, Ethernet, or Asyach.ronous Trans-
fer Mode). Devices called touters move IP datagrams between
the different media and their encapsulations. Routers pass IP
datagrams between different media according to routing infor-
mation in the IP datagram. This mesh of different media
interconnected by routers forms an IP internet, in which all

This work wasfunded by NASA Lewis Research Center.

t Two very good books on the subject are [1] and [2].

NASA/CR-- 1999-209167

hosts on the integrated mesh can communicate with each
other using IP. 2

The actual service IP implements is unreliable datagram
delivery. IP simply promises to make a reasonable effort to
deliver every datagram to its destination. However IP is free
to occasionally lose datagrams, deliver datagrams with errors
in them, and duplicate and reorder datagrams.

Because IP provides such a simple service, one might
assume that IP places no limits on throughput. Broadly speak-
ing, this assumption is correct. IP places no constraints on
how fast a system can generate or receive datagrams. A sys-
tem transmits IP datagrams as fa._t as it can generate them.
However, IP does have two features that can affect through-
put: the IP Time to Live and IP Fragmentation.

IP Time To Live _ In certain situations, IP datagrams may
loop among a set of routers. These loops are sometimes tran-
sient (a datagram may loop for a while and then proceed to
its destination) or long-lived. To protect against datagrams
circulating semipermanently, IP places a limit on how long a
datagram may live in the network.

The limit is imposed by a Time To Live (TTL) field in the
IP datagram. The field is decremented at least once at every
router the datagram encounters and when the "FI'L reaches
zero, the datagram is discarded.

' Originally, the IP specification also required that the TI'L also
be decremented at least once per second. Since the _ field is
8-bits wide, this means a datagram could live for approximately
4.25 minutes. In practice, the injunction to decrement the TTL
once a second is ignored, but, perversely, specifications for high-
er layer protocols like TCP usually assume that the maximum
time a datagram can live in the network is only two minutes.

2 The term interact is agener/c word[ora group of interconnected net-

works. The [nternet is the global IP internet. Recently the term intranet has
evolved from its original meaning (an adjective meaning on a singlephysi-
cal network [3]) into apopular way to describe an IP internetentirely
within an organization.

82



Thesignificanceof themaximumdatagramlifetimeis
thatit meanshigherlayerprotocolsmustbecarefulnotto
sendtwosimilardatagrams(inparticular,twodatagrams
whichcouldbeconfusedforeachother)withinafewmin-
utesof eachother.Thislimitationisparticularlyimpor-
tantfor sequencenumbers.If ahigherlayerprotocol
numbersitsdatagrams,it mustensurethatit doesnot
generatetwodatagramswiththesamesequencenumber
withinafewminutesofeachother,lestIPdeliverthesec-
onddatagramfirstandconfusethereceiver.Wediscuss
thisissuemorein thenextsectionwhenwediscussTCP
sequencespaceissues.

IP Fragmentation -- Different network media have differ-
ent limits on the maximum datagram size. This limit is
typically referred to as the Maximum Transmission Unit
(MTU). When a router is moving a datagram from one
media to another, it may discover that the datagram, which
was of legal size on the inbound media, is too big for the
outbound media. To get around this problem, IP supports
fragmentation and reassembly, in which a router can break
the datagram up into smaller datagrams to fit on the out-
bound media. The smaller datagrams are reassembled into
the original larger datagram at the destination (not the
intermediate hops).

Fragments are identified using a fragment offset field
(which indicates the offset of the fragment from the start of
the original datagram). Datagrams are uniquely identified by
their source, destination, higher layer protocol type, and a 16-
bit IP identifier (which must be unique when combined with
the source, destination and protocol type).

Observe that there's a clear link between the TTL field and
the IP identifier (first identified by [4]). An IP source must
ensure that it does not send two datagrams with the same IP
identifier to the same destination, using the same protocol
within a maximum datagram lifetime, or fragments of two dif-
ferent datagrams may be incorrectly combined. Since the IP
identifier is only 16 bits, if the maximum data_am lifetime is
two minutes, we are limited to a transmission rate of only 546
datagrams per second. That's clearly not fast enough. The
maximum IP datagram size is 64 KB, so 546 datagrams is, at
best, a bit less than 300 Mb/s.

The problem of worrying about IP identifier consumption
has largely been solved by the development of MTU Discov-
ery a technique for IP sources to discover the MTU of the
path to a destination [5]. MTU Discovery is a mechanism that
allows hosts to determine the MTU of a path reliably. The
existence of MTU discovery allows hosts to set the Don't
Fragment (DF) bit in the IP header, to prohibit fragmenta-
tion, because the hosts will learn through MTU discovery if
their datagrams are too big. Sources that set the DF bit need
not worry about the possibility of having two identifiers active
at the same time. Systems that do not implement MTU dis-
covery (and thus cannot set the DF bit) need to be careful
about this problem.

TCP Throughput Issues
The Transmission Control Protocol (TCP) is the primary
transport protocol in the TCP/IP protocol suite. It imple-
ments a reliable byte stream over the unreliable datagram
service provided by IP. As part of implementing the reliable
service, TCP is also responsible for flow and congestion con-
trol: ensuring that data is transmitted at a rate consistent
with the capacities of both the receiver and the intermediate
links in the network path. Since there may be multiple TCP
connections active in a link, TCP is also responsible for
ensuring that a link's capacity is responsibly shared among

NASA/CR--1999-209167

Ver I IHL I ToS

i" :- _!%i_ Protocol

Total length

Fig [ Fragment offset
Checksum

Source address

Destination address

IP

header

Sourceport Destination port TCP
_'_,_._'.;,_ :+::. ;_:,_z cSequence:number :L-_.__-::+x-._:_'._-':. _._.l header

OffsetI I :F'ag=
Checksum _ _ --I[ Urgent pointer I

II Figure 1. TCP and IP header fields that affect throughput.

the connections using it. As a result, most throughput issues
are rooted in TCP.

This section examines the major features of TCP that affect
performance. Many of these performance issues have been
discovered over the past few years as link transmission speeds
have increased and so called high delay-bandwidth paths 3
(paths where the product of the path delay and available path
bandwidth is big) have become common. To begin to illustrate
the challenge, consider that in the 1970s when TCP was being
developed, the typical long link was a 56 kb/s circuit across the
United States, with a delay-bandwidth product of approxi-
mately 0.250 x 56,000 bits or 1.8 KB, while today's Interne[
contains 2.4 Gb/s circuits crossing the US, which boast a
delay-bandwidth product of 75 MB.

Throughput Expectations -- Before presenting the performance
issues for TCP, it is worth talking briefly about throughput
goals.

TCP throughput determines how fast most applications can
move data across a network. AppIication protocols such as
ITI'FP (the World Wide Web protocol), and the File Transfer
Protocol (FTP), rely on TCP to carry their data. So TCP per-
formance directly impacts application performance.

While there are no formal TCP performance standards,
TCP experts generally expect that, when sending large
datagrams (to minimize the overhead of the TCP and IP
headers), a TCP connection should be able to fill the avail-
able bandwidth of a path and to share the bandwidth with
other users. If a link is otherwise idle, a TCP connection is
expected to be able to fill it. If a link is shared with three
other users, we expect each TCP to get a reasonable share
of the bandwidth.

These expectations reflect a mix of practical concerns.
When users of TCP acquire faster data lines, they expect their
TCP transfers to run faster. And users acquire faster lines for
different reasons: Some need faster lines because as their
aggregate traffic has increased, they have more applications
that need network access. Others have a particular application
that requires more bandwidth. The requirement that TCP
share a link effectively reflects the needs of aggregation; all
users of a faster link should see improvement, The require-
ment that TCP fill an otherwise idle link reflects the needs of

more specialized applications.
TCP Sequence Numbers -- TCP keeps track of all data in
transit by assigning each byte a unique sequence number. The
receiver acknowledges received data by sending an acknowl-

S To avoid confusion, we note that the data networking community, unlike

some engineering communities, uses the term bandwidth interchangeably

with hi[rate.
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edgmentwhichindicatesthatthereceiverhasreceivedall
datauptoaparticularbytenumber.

TCPallocatesits sequencenumbersfrom a 32-bit

wraparound sequence space. To ensure that a given sequence
number uniquely identifies a particular byte, TCP requires that
no two bytes with the same sequence number be active in the
network at the same time. Recall the early discussion of IP
datagram lifetime indicated a datagram was assumed to live
for up to two minutes. Thus when TCP sends a byte in an IP
datagram, the sequence number of that byte cannot be reused
for two minutes. Urtfommately, a 32-bit sequence space spread
over two minutes gives a maximum data rate of only 286 M'bls.

To fix this problem, the Internet End-to-End Research
Group devised a set of TCP options and algorithms to extend
the sequence space. These changes were adopted by the Inter-
net Engineering Task Force (IETF) and are now part of the
TCP standard. The option is a timestamp option [6] which
concatenates a timestamp to the 32-bit sequence number.
Comparing timestamps using an algorithm called PAWS ('Pro-
tection Against Wrapped Sequence numbers) makes it possi-
ble to distinguish between two identical sequence numbers
sent less than two minutes apart.

Depending on the actual granularity of the timestamp (the
IETF recommends between 1 second and 1 millisecond), this
extension is sufficient for link speeds of between 8 Gb/s and 8
Tb/s (terabits per second).

TCP Transmission Window -- The purpose of the transmission
window is to allow the receiving TCP to control how much
data is being sent to it at any given time. The receiver adver-
tises a window size to the sender. The window measures, in
bytes, the amount of unacknowledged data that the sender
can have in transit to the receiver. The distinction between

the sequence numbers and the window is that sequence num-
bers are designed to allow the sender to keep track of the
data in flight, while the window's purpose is to allow the
receiver to control the rate at which it receives data.

Obviously, if a receiver advertises a small window (due, per-
haps, to buffer limitations) it is impossible for TCP to achieve
high transmission rates. And many implementations do not
offeI a very large window size (a few kilobytes is typical).

However, there is a more serious problem. The standard
TCP window size cannot exceed 64 KB, because the field in
the TCP header used to advertise the window is only 16 bits
wide. This limits the TCP effective bandwidth to 214 bytes
divided by the round-trip time of the path [7]. For long delay
links, such as those through satellites with a geosynchronous
orbit (GEO), this limit gives a maximum data rate of just
under 1 Mb/s.

As part of the changes to add timestamps to the sequence
numbers, the End-To-End Research Group and IETF also
enhanced TCP to negotiate a window scaling option. The
option multiplies the value in the window field by a constant.
The effect is that the window can only be adjusted in units of
the multiplier. So if the multiplier is 4, an increase of 1 in the
advertised window means the receiver is opening the window
by 4 bytes.

The window size is Limited by the sequence space (the win-
dow must be no larger than one half of the sequence space so
that it is unambiguously clear that a byte is inside or outside
the window). So the maximum multiplier permitted is 214.

30 eThis means the maximum window size is 2 and th maxi.

mum date rate over a GEO satellite link is approximately 15
Gb/s. Given we have achieved Tb/s data rates in terrestrial
fiber, this value is depressingly small, but in the absence of a
major change to the TCP header format it is not clear how to
fix the problem.

Slow Start -- When a TCP connection starts up, the TcP
specification requires the connection to be conservative and
assume that the available bandwidth to the receiver is small.
TCP is supposed to use an algorithm called slow start [8], to
probe the path to learn how much bandwidth is available.

The slow start algorithm is quite simple and based on data
sent per round trip. At the start, the sending TCP sends one
TCP segment (datagram) and waits for an acknowledgment.
When it gets the acknowledgment, i-t Sends two segments.
Many TCPs acknowledge every other segment they receive, 4 so
the slow start algorithm effectively sends 50 percent more data
every rouhd trip. it continues this process (sending 50 percent
more data each round trip) until a segment is lost. This loss is
interpreted as indicating congestion and the connection scales
back to a more conservative approach (described in the next
section) for probing bandwidth for the rest of the connection.

There are two problems with the slow start algorithm on
high-speed networks. First, the probing algorithm can take a
long time to get up to speed. The time required to get up to
speed is R(I + loges (DB/I)), where R is the round-trip time,
DB is the delay-bandwidth product and I is the average seg-
ment length. If we are trying to fill a pipe with a single TCP
connection (and, if the TCP connection is the sole user of the
link, filling the link is considered the canonical goal), then DB
should be the product of the bandwidth available to the con-
neetion and the rotmd-trip time.

An important point is that as the bandwidth goes up or
round-trip time increases, or both, this startup time can be
quite long. For instance, on a Gb/s GEO satellite link with a 0.5
second round-trip time, it takes 29 round-trip times or 14.5 sec-
onds to finish startup. If the link is otherwise idle, during that
period most of the link bandwidth will be unused (wasted).

Even worse is that, in many cases, the entire transfer will
complete before the slow start algorithm has finished. The
user will never experience the full link bandwidth. All the
transfer time will be spent ha slow start. This problem is par-
ticularly severe for HTTP (the World Wide Web protocol),
which is notorious for starting a new TCP connection for
every item on a page. 5 This poor protocol design is a (major)
reason Web performance on the Internet is perceived as poor:
the Web protocols never let TCP get. up to full speed.

Currently, the IETF is in the early stages of considering a
change to allow TCPs to transmit more than one segment (the
current proposal permits between two and four segments) at
the beginning of the initial slow start. If there is capacity in
the path, this change will reduce the slow start by up to three
round-trip times. This change mostly benefits shorter transfers
that never get out of slow start.

The second problem is interpreting loss as indicating con-
gestion. TCP has no easy way to distinguish losses due to
transmission errors from losses due to congestion, so it makes
the conservative assumption that all losses are due to conges-
tion. However, as was shown in an unpublished experiment at
MIT, given the loss of a TC'P segment early in the slow start
process, TCP will then set its initial estimate of the available
bandwidth far too low. And since the probing algorithm
becomes linear rather than exponential after the initial esti-
mate is set, the time tO get to full transmission rate can be
very long. On a gigabit GEO link, it could be several hours!

4TCP acknowledgments are cumulative; so one acknowledgment can
acknowledge multiple segments. Sending one ack_wledgrn_nt for every
two segments reduces the return path bandwidth consumed by the
acknowledgments.

5A problem now being alleviated by the HTTP I.I specification [9].
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• Table 1. Summary o,fsatellite and TCP interactions.

Congestion Avoidance _ Throughout a TCP connection, TCP
runs a congestion avoidance algorithm which is similar to the
slow start algorithm and was described in the same paper by
Jacobson [8]. Essentially, the sending TCP maintains a conges-
tion window, an estimate of the actual available bandwidth of the
path to the receiver. This estimate is set initially by the slow start
at the start of the connection. Then the estimate is varied up and
down during the life of the connection based on indications of
congestion (or the absence thereof). In general, congestion is
assumed to be indicated by loss of one or more datagrams.

The basic estimation algorithm is as follows. Every round
trip, the sending TCP increases its estimate of the available
bandwidth by one maximum-sized segment. Whenever the
sender either finds a segment was lost (conservatively assumed
to be due to congestion) or receives an indfcation from the
network (e.g., an ICMP Source Quench) that congestion
exists, the sender halves its estimate of the available band-
width. The sender then resumes the one segment per round-
trip probing algorithm. (In certain, extreme, loss situations,
the sender will do a slow start).

Like the slow start algorithm, the major issue with this
algorithm is that over high-delay-bandwidth links, a datagram
lost to transmission error will trigger a low estimate of the
available bandwidth, and the linear probing algorithm will
take a long time to recover.

Another issue is that the rate of improvement under con-
gestion avoidance is a function of the delay-bandwidth prod-
uct. Basically congestion avoidance allows a sender to increase
its window by one segment, for every round-trip time's worth
of data sent. In other words, congestion avoidance increases
the transmission rate by IlDB each round trip [10, 11].

Selective Acknowledgments _ Recently the Interact Engineer-
ing Task Force has approved an extension to TCP called
Selective Acknowledgments (SACKs) [12]. SACKs make it
possible for TCP to acknowledge data received out of order.
Previously TCP had only been able to acknowledge data
received in order.

SACKs have two major benefits. First, they improve the
efficiency of TCP retransmissions by reducing the retransmis-
sion period. Historically, TCP has used a retransmission algo-
rithm that emulates selective-repeat ARQ using the
information provided by in-order acknowledgments. This algo-
rithm works, but takes roughly one round-trip time per lost
segment to recover. SACK allows a TCP to retransmit multi-
ple missing segments in a round trip. Second, and more
importantly, work by Math.is and Mahdavi [12] has shown that
with SACKs a TCP can better evaluate the available path
bandwidth in a period of successive losses and avoid doing a
slow start.

Inter-Relations _ It is important to keep in mind that all the
various TCP mechanisms are interrelated, especially when
applied to problems of high performance. If the sequence
space and window size are not large enough, no improvement
to congestion windows will help, since TCP cannot go fast

enough anyway. Also, if the receiver chooses a small window
size, it takes precedence over the congestion window, and can
limit throughput.

More broadly, tinkering with TCP algorithms tends to show
odd interrelations. For instance, the individual TCP Vegas
performance improvements [13, 14] were shown to work only
when applied together applying only some of the changes
actually degraded performance. And there are also known
TCP syndromes where the congestion window gets misesti-
mated, causing the estimation algorithm to briefly thrash
before converging on a congestion window. (The best known
is a ease where a router has too little buffer space, causing
bursts of datagrams to be lost even though there is link capac-
ity to carry all the datagrams).

Satellites and TCP/IP Throughput

For the rest of this article we apply the general discussion of
/the previous section to the specific problem of achieving
high throughput over satellite links. First, we point out the
need to implement the extensions to the TCP sequence space
and window size. Then we discuss the relationship between
slow start and performance over satellite links and some pos-
sible solutions.

Currently satellites offer a range of channel bandwidths,
from the very small (a compressed phone circuit of a few kb/s)
to the very large (the Advanced Communications and
Telecommunications Satellite with 622-Mb/s circuits). They
also have a range of delays, from relatively small delays of low
earth orbit (LEO) satellites to the much larger delays of GEO
satellites. Our concern is making TCPIIP work well over those

t"

ranges.

General Performance
Many of the problems described in the previous section on
TCPflP performance were ones that became acute only over
high-delay-bandwidth paths. One of the first things to note is
that all but the slowest satellite links are, blt definition, high-
delay-bandwidth paths, because the transmission delays to and
from the satellite from the Earth's surface are large.

Table 1 illustrates for a range of common bandwidths,
when the TCP enhancements of PAWS and large windows are
required to fully utilize the bandwidth on a LAN link with 5
ms one-way delay, a LEO link (100 ms one-way) and GEO
(250 ms one-way) link, for a range of link speeds. We also
indicate how long slow start takes to get to full link speed,
assuming 1 KB datagrams (a typical size) are transmitted and
how much data is transferred during the slow start phase.

The table highlights some key challenges for satellites (and
also for transcontinental terrestrial links, which have delays
similar to LEO satellite links). One simply cannot get a
TCP/IP implementation to perform well at higher speeds
unless it supports large windows, and at speeds past about 100
Mb/s, PAWS. Thus anyone who has not had their TCP/IP
software upgraded with PAWS and large windows will not be
able to achieve high performance over a satellite link.
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[] Tolole 2. Approximate number of bits sent over GEO link dur-
ing congestion avoidance.

Slow Start Revisited

Another point of Table 1 is that the initial slow start period
can be quite long and involve large quantities of data. Particu-
larly striking is the column for 155 Mb/s transfers. Between 8
and 21 megabytes of data are sent over a satellite link during
slow start at 155 Mb/s. Even at 1.5 Mb/s a GEO link must
carry nearly 200 KB before slow start ends. Few data transfers
on the Internet are megabytes long. Many are a few kilobytes.
All of which says that satellite links will look slow and ineffi-
dent for the average data transmission. Interestingly enough,
long-distance terrestrial links will also look slow. Their delays
are comparable to those of LEO links.

Furthermore, observe that the table helps explain the varia-
tion in reported TCP goodput over satellite links. Short data
transfers will never achieve full link rate. In many cases, a
gigabyte file transfer or larger is probably required to ensure
throughput figures are not heavily influenced by slow start.

Obviously some sort of solution to reduce the slow start
transient would be desirable. But finding a solution isn't easy.

One obvious solution is to dispense with slow start and just
start sending as fast as one can until data is dropped, and then
slow down. This approach is known to be disasterous. Indeed,
slow start was invented in an environment in which TcP

implementations behaved this way and were driving the Inter-
net into congestion collapse. As one example of how this
scheme goes wrong, consider a Gb/s capable TCP launching
several 100s of megabits of data over a path that turns out to
have only 9.6 kb/s of bandwidth. There's a tremendous band-
width mismatch which will cause datagrams to be discarded or
suffer long queuing delays.

As this example illustrates, one of the important problems
is that a sending TCP has no idea, when it starts sending, how
much bandwidth a particular transmission path has. In the
absence of knowledge, a TCP should be conservative. And
slow start is conservative m it starts by sending just one data-
gram in the first round trip.

However, it is clear that somehow we need to be able to
give TCP more information about the path if we are to avoid
the peril of having TCP chronically spend its time in sl0w
start. One nice aspect of this problem is that it is not specitie
to satellites. Terrestrial lines need a solution too, and thus if
we can find a general solution that works for both Satellites
and terrestrial lines, everyone will be happy to adopt it.

Improving Slow Start _ If the TCP had more information

aboutthe path, it could presumably skip at least some of
the slow start process possibly by starting the slow start at a
somewhat higher rate than one datagram. (The IETF initia.
tire to use a slightly larger beginning transmission size for
the initial slow start is a step in this direction). But actually
learning the properties of the path is hard. IP keeps no
path bandwidth information, so TCP cannot ask the net-
work about path properties. And while there are ways to
estimate path bandwidth dynamically, such as packet-pair
[12, 13], the estimates can easily be distorted in the pres-
ence of cross traffic.

TCP Spoofing _ Another idea for getting around slow start is

a practice known as "TCP spoofing," described in [14]. The
idea calls for a router near the satellite link to send back
acknowledgments for the TCP data to give the sender the illu-
sion of a short delay path. The router then suppresses acknowl-
edgmer_ts returning from the receiver, and takes responsibility
for retransmitting any segments lost downstream of the router.

There are a number of problems with this scheme. First, the
router must do a considerable amount of work after it sends an
acknowledgment. It must buffer the data segment because the
original sender is now free to discard its copy (the segment has
been acknowledged) and so if the segment gets lost between
the router and the receiver, the router has to take full responsi-
bility for retransmitting it. One side effect of this behavior is
that if a queue builds up, it is likely to be a queue of TCP seg-
ments that the router is holding for possible retransmission.
Unlike IP datagrams, this data cannot be deleted until the
router gets the relevant acknowledgments from the receiver.

Second, spoofing requires symmetric paths: the data and
acknowledgments must flow along the same path through the
router. However, in much of the Internet, asymmetric paths
are quite common [15].

Third, spoofing is vulnerable to unexpected failures. If a path
changes or the router crashes, data may be lost. Data may even
be lost after the sender has finished sending and, based on the
router's acknowledgments, reported data successfully transferred.

Fourth, it doesn't work if the data in the IP datagram is encrypt-
ed because the router will be unable to read the TCP header.

Cascading TCP _ Cascading TCP, also know as split TCP, is
a idea where a TCP connection is divided into multiple TCP
connections, with a special TCP connection running over the
satellite link. The thought behind this idea is that the TCP
running over the satellite link can be modified, with knowl-
edge of the satellite's properties, to run faster.

Because each TCP connection is terminated, cascading
TCP is not vulnerable to asymmetric paths. And in cases
where applications actively participate in TCP connection
management (such as Web caching) it works well. But other-
wise cascading TCP has the same problems as TCP spoofing.

Error Rates. for Satellite Paths

Experience suggests that satellite paths have higher error
rates than terrestrial lines. In some cases, the error rates are
as high as 1 in 10 s.

Higher error rates matter for two reasons. First, they cause
errors in datagrams, which will have to be retransmitted. Sec-
ond, as noted above, TCP typically interprets loss as a sign of
congestion and goes back into a modified version of slow
start. Clearly we need to either reduce the error rate to a level
acceptable to TCP or find a way to let TCP know that the
datagram loss is due to transmission errors, not congestion
(and thus TCP should not reduce its transmission rate).

Acceptable Error Rates _ What is an acceptable link error
rate in a TCP/IP environment? There is no hard and fast

answer to this problem. This section presents one way to think
about the problem for satellites: looking at TCP's natural fre-
quency of congestion avoidance starts, and seeking an error
rate that is substantially less than that frequency.

Suppose we consider the performance of a single estab-
lished TCP over an otherwise idle link. Once past the initial
slow start, the established TCP connection with data to send
will alternate between two modes:
• Performing congestion avoidance until a segment is

dropped, at which point the TCP fails back to half its win-
dow size and resumes congestion avoidance
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• OccasionaUyperformingaslowstartwhenlossbecomessevere.
Duringmuchofthecongestionavoidancephase,theTCP

willtypicallybeusingthepathatornearfullcapacity.Rough-
lyspeakingthisphaselastsp round-trip times, where p is the
largest value such that the following inequality is true:

p

_i_b
j'=l

Where b is the buffering in segments at the bottleneck in the
path. (Why this equation? In congestion avoidance the TCP is
sending an additional segment every round trip. Suppose we
start congestion avoidance at exactly the right window size,
namely the delay-bandwidth product. In the first round trip of
congestion avoidance the TCP will be sending one segment
more than the capacity of the path, so this segment will end
up sitting in a queue. In the second round trip, the TCP will
send two segments more thar_ the capacity and these two seg-
ments will join the first one segment in the queue. And so
forth, until the queue is filled and a segment is dropped.)
Table 2 shows the number of bits sent during the congestion
avoidance phase for a range of GEO link speeds, buffer sizes
and values ofp.

Clearly we would like to avoid terminating the congestion
avoidance phase early, since it causes TCP to ufiderestimate
the available bandwidth. Turning this point around, we can
say that a link should have an effective error rate sufficiently
low that it is very unlikely that i:he congestion avoidance phase
will be prematurely ended by a transmission error. Table 2
suggests this requirement means that satellite error rates on
higher-speed links need to be on the order of 1 in 1012or bet-
ter. That's about the edge of the projected error rates for new
satellites. The ACTS satellite routinely sends 1013 bits of data
without an error. Proposed Ka band systems are aiming for an
effective error rate of about 1 in 1012.

Teaching TCP to Ignore Transmission Errors -- As an alterna-
tive to, or in conjunction with, reducing satellite error rates
we might wish to teach TCP to be more intelligent about han-
dling transmission errors. There are basically two approaches:
either TCP can explicitly be told that link errors are occurring
or TCP can infer that link errors are occurring.

NASA has funded some experiments with explicit error
notification as part of a broader study on very long space links
done at Mitre [16]. One general challenge in explicit notifica-
tion is that TCP and IP rarely know that transmission errors
have occurred because transmission layers discard the errored
datagrams without passing them to TCP and IP.

Having TCP infer which errors are due to transmission
errors .rather than congestion also presents challenges. One
has to find a way for TCP to distinguish congestion from
transmission errors reliably, using only information provided
by TCP acknowledgments. And the algorithm better never
make a mistake, because a failure to respond to congestion
loss can exacerbate network congestion. So far as we know, no
one has experimented with inferring transmission errors.

Conclusions

,_tellite links are today's high-delay-bandwidth paths.
omorrow high-delay-bandwidth paths will be everywhere.

(Consider that some carriers are already installing terrestrial
OC-768 [40 Gb/s] network links.) So most of the problems
described in this article need to be solved not just for satel-
lites but for high-delay paths in general.

The first step to achieving high performance is making sure
the sending and receive TCP implementations contain all the
modem features (large windows, PAWS, and SACK) and that

the TCP window space is larger than the delay-bandwidth
product of the path. Any user worried about high perfor-
mance should take these steps now.

The next step is to find ways to further improve the perfor-
mance of TCP over long delay paths and in particular, reduce
the impact of slow start. Slow start provides an essential ser-
vice; the issue is whether there are ways to reduce its start up
time, especially when the connection first starts. Because long
delay satellite links are only an instance of the larger problem
of high-delay bandwidth paths, the authors are less interested
in point solutions that only address the performance problems
for satellites. We look with hope for solutions that benefit
both terrestrial and satellite links.
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